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Adversarial Multiple-Target Domain Adaptation for
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Abstract—Data-driven fault diagnosis methods are receiving
great attention as they can be applied to many real-world appli-
cations. However, they work under the assumption that training
data and testing data are drawn from the same distribution. Prac-
tical scenarios have varying operating conditions, which results in
a domain shift problem that significantly deteriorate the diagnosis
performance. Recently domain adaptation has been explored to
address the domain shift problem by transferring the knowledge
from labeled source domain (e.g., source working condition) to
unlabeled target domain (e.g., target working condition). Yet all
the existing methods are working under single source single target
(1S1T) settings. Hence, a new model need to be trained for each
new target domain. This shows limited scalability in handling
multiple working conditions since different models should be
trained for different target working conditions, which is clearly
not a viable solution in practice. To address this problem, we
propose a novel adversarial multiple domain adaptation (AMDA)
method for single source multiple target (1SmT) scenario, where
the model can generalize to multiple target domains concurrently.
Adversarial adaptation is applied to transform the multiple
target domains features to be invariant from the single source
domain features. This leads to a scalable model with a novel
capability of generalizing to multiple target domains. Extensive
experiments on two public datasets and one self-collected dataset
have demonstrated that the proposed method outperforms state-
of-the-art methods consistently. Our source codes and data are
available via https://github.com/mohamedr002/AMDA.

Index Terms—Intelligent fault diagnosis, adversarial domain
adaptation, discriminator, convolutional neural network, single
source multiple targets

I. INTRODUCTION

Data-driven fault diagnosis methods have potentials to gen-
erate great impacts in many real-world industrial applications.
For example, it can help to intelligently monitor machine
health status, identify root causes of failures, make main-
tenance decisions, etc. While traditional machine learning
techniques have been employed for machine fault diagnosis
[1], they suffer from labor-intensive feature engineering and
require large amount of manually labelled training data.

During past few years, deep learning, with the ability to
automatically extract salient features, achieves better perfor-
mance in a few areas, including computer vision, speech
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Fig. 1. Existing approaches vs our scalable multi-target approach

recognition, natural language processing, etc. Recently, deep
learning has also been applied for fault diagnosis. Chen et
al. employed 1D convolutional neural network (CNN) with
transferable features to leverage knowledge from source do-
main for fault diagnosis of rotary machinery [2], while Wen
et al. developed a hierarchical diagnosis approach based on
CNN to diagnose the fault and find its degradation level
concurrently [3]. Sohaib et al. integrated CNN with bi-
spectrum analysis to achieve fault diagnosis of inconsistent
working environments [4]. In [5], stacked autoencoder was
augmented with compressed sensing to reduce the amount
of measured data and automatically extract features in a
transform domain. Wang et al. integrated CNN with squeeze
and excitation networks to graphically represent the bearing
states [6]. Liang et al. employed semi-supervised generative
adversarial network coupled with wavelet transform to reduce
the number of labeled samples [7].

Zhao et al. performed a comprehensive review on different
deep learning algorithms for fault diagnosis [8]. Nevertheless,
these methods work under the assumption that labelled training
data and unlabeled test data are drawn from the same distri-
bution, which does not hold for many practical scenarios. For
example, the training data could be collected under a certain
working condition (e.g. 1 hp/horsepower working loads), and
we can build models using existing methods, that often work
well in test with the same working condition. However, in real-
world applications, we may need to handle the real test data
(unlabeled) with totally different working conditions (e.g., 2
hp or any other working loads), meaning that the distribution
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of the unlabeled test data usually do not follow the same
distribution as the labeled training data. Thus the trained
classifier will not be able to generalize well on test data with
different distributions. As such, we need to recollect a set
of training data to rebuild a customised model, specifically
for each working condition. However, it is very expensive,
if not impossible, to annotate training data for each working
condition to rebuild a new model.

Recently, domain adaptation (DA), a special case of transfer
learning, has been proposed to leverage the knowledge from
labelled source domain data to train a classifier that can
generalize to a target domain with a different distribution. DA
has been successfully applied in many different applications
such as natural language processing, object recognition, speech
recognition, and sentiment analysis [9]. Very recently, it has
been explored to address domain shift problem to transfer
the model from source domain (one working condition) to
target domain (different working condition) in intelligent fault
diagnosis and prognosis problems [10]–[16]. However, all ex-
isting methods work under single source single target settings
(1S1T), which is not feasible as the working conditions can
be varying to satisfy different manufacturing needs. As such,
if the target domain has changed, we need to train a new
model independently as shown in Fig. 1, which is clearly
not a viable solution in practice. On the other hand, naı̈vely
merging multiple target domains together into a single target
will not work either, as data from multiple target domains
typically have different data distributions and unique data
characteristics.

In this paper, we build upon the work done by Tzeng et
al.[17], who proposed adversarial domain adaptation approach
with (1S1T) to obtain domain invariant features for image-
related problems. We extend this work in two directions.
First, we realize the adversarial domain approach for time
series data. Second, we tackle a more challenging and prac-
tical domain adaptation problem under the single source and
multiple targets (1SmT) setting for fault diagnosis purpose.
For instance, we assume that a machine can work under
four different loads, i.e., A, B, C and D. Some data have
been collected to train a fault diagnostic model when the
machine is working under load A. In our 1SmT setting, the
model can adapt to multiple different loads concurrently, i.e.,
B, C and D. We propose a novel deep learning architecture
for adversarial unsupervised domain adaptation for the 1SmT
problem. As shown in Fig. 2, we first train the source feature
extractor to obtain class discriminative features using the
labeled source domain. Then, the target feature extractors are
initialized by the weights of the source feature extractor and
thus inherit the class-discriminative property. On the other
hand, a discriminator network is trained to distinguish between
the source and multiple targets features. To obtain domain
invariant features among different targets, we adversarially
update multiple target feature extractors to generate features
that can be indistinguishable for the discriminator. During
testing, our scalable model can take any of the target domains
and generate source-like features, where the trained source
classifier is able to generalize well to any of the targets.

The main contributions of this paper can be summarized as

Fig. 2. Proposed adversarial multiple target domain adaptation for fault
diagnosis.

follows.
• We formulate a more realistic 1SmT problem that is

particularly used for real-world fault diagnostic problem.
• We propose a novel multiple adversarial domain adapta-

tion (AMDA) method, which designs a deep learning ar-
chitecture for adversarial unsupervised domain adaptation
to address 1SmT problem. To the best of our knowledge,
it is the first attempt in this area.

• We addressed the limited scalability of existing ap-
proaches by proposing a general model that can general-
ize to multiple targets concurrently.

• Extensive experimental results demonstrate that our pro-
posed AMDA model can generalize to multiple target
domains simultaneously and achieve significantly better
results than the state-of-the-art methods consistently.

II. RELATED WORKS

Unsupervised domain adaptation (DA) transfers knowledge
to source domain with sufficient labels to unlabeled target
domain data drawn from a different but related distribution. In
the fault diagnosis problem, many approaches have been devel-
oped to address the domain shift problem. However, they only
work with single source single target (1S1T) scenario, which
can only handle single target domain at a time. Differently, we
propose a novel single source multiple targets (1SmT) scenario
to handle multiple targets concurrently, which is more scalable
and valuable for practical fault diagnosis problems.

A. Single Source Single Target

Many existing approaches have employed domain adap-
tation for fault diagnosis using single source single target
scenario (1S1T) [18]. In [19], researchers employed auto-
encoder to extract domain invariant features, with the help
of popular domain discrepancy metric Maximum Mean Dis-
crepancy (MMD) [20] to measure the discrepancy between
the source and target distributions. Minimizing both auto-
encoder loss and MMD loss between the two distributions
will produce a good feature representation for both source
and target domains. A wide kernel CNN with adapted batch
normalization to improve the generalization was proposed by
Zhang et al. [21]. Wen et al. [22] proposed sparse auto-
encoder to extract features in an unsupervised manner that
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is subsequently used to train a softmax classifier. Moreover,
they also fine-tuned the network to minimize the classification
loss and the domain discrepancy loss. Very recently, Li et
al. [15] employed 1D CNN to extract feature representation
from frequency domain features. They also used a represen-
tation clustering scheme to maximize intra-class similarity
and reduce inter-class similarity, coupled with classification
loss for more discriminative features, and adopted MMD
to obtain domain invariant features [23]. In [10], Xiang et
al. addressed the problem of cross domain fault diagnosis
with insufficient faulty data, where they employed generative
adversarial networks to generate faulty data in the target
domain [24], and used the generated data into the domain
adaptation scheme to solve the cross domain problem. In [25],
a sparse filtering approach coupled with high-order Kullback-
Leiblier divergence extracted a domain invariant features in
unsupervised manner. Li et al. proposed a domain adaptation
approach to address fault diagnosis problem with data from
different places in the same machine [26]. Particularly, they
integrated a gradient reversal layer with a novel parallel data
alignment technique to tackle the domain shift problem. In
[27]. a hierarchical deep domain adaptation approach has been
used for fault diagnosis of thermal system under varying
working conditions. Specifically, they employed correlation
alignment (CORAL) with successive denoising autoencoders
to learn domain invariant features among different working
conditions. Finally, in [28], a two phase approach was pro-
posed, where the authors first pre-trained a model on the
source domain data using 1D CNN, and then fine-tuned untied
model using target domain data and MMD.

B. Single Source Multiple Targets

Among domain adaptation literature, a little attention has
been paid to (1SmT) problem. Recently, some approaches
have addressed multiple domain learning problem [29], [30].
However, they all in the context of image generation task,
where they train a single generator to generate samples from
different domains. Differently, our AMDA approach is ad-
dressing (1SmT) for time series classification problem. To the
best of our knowledge, our proposed AMDA is first trial in
this application.

III. ADVERSARIAL MULTIPLE-TARGET DOMAIN
ADAPTATION

In this section, we firstly present our problem formulation
for single source multiple targets (1SmT), and then provide
technical details on addressing the 1SmT problem with an
application to time series data for fault diagnosis. The pro-
posed framework as shown in Fig. 3 is composed of three
main architectures, namely, Feature Extractor E, Classifier C,
and Discriminator D. Specifically, we used E to construct
single source feature extractor Es, and multiple target feature
extractors Et(N) with tied weights.

Different from existing approaches, we tie the weights of the
feature extractors of the multiple target domains, inspired by
multi-task learning [31]. This enables a single feature extractor
to generalize to multiple target domains during testing stage.

In addition, it helps to reduce the capacity of the model and
act as a regularizer to avoid overfitting. To this end, unlike all
existing approaches, which can generalize to single target at a
time, our model can be more scalable and have a generalization
ability that can handle multiple targets concurrently.

In general, our proposed method contains three main steps:
(1) supervised learning using source domain labels; (2) adver-
sarial adaptation of N target domains to single source domain;
(3) test the domain adapted model on all N target domains.
The goal of this paper is to construct a network that can find
a shared latent space between the source and multiple target
domains, such that the discrepancy between the source domain
and target domains is minimized. As such, the model can be
better generalized to the multiple target domains concurrently.
In the following subsections, we will explain each step in more
details.

A. Problem Formulation

The domain adaptation involves a domain D and task
T [32], where the domain D consists of two components:
a feature space X and marginal distribution P (x), where
D =

{
X , P (x)

}
, x ∈ X , where x is the data sample.

Correspondingly, the task T consists of two components:
a label space Y and mapping function f(x), where
T =

{
Y, f(x)

}
.

Our 1SmT problem can be formulated as follows:
• We have a labelled single source domain Ds =
{xi

s, y
i
s}

ns
i=1 of ns samples, where xi

s ∈ Xs is the
data sample and yis ∈ Ys is the corresponding label.
Similarly, we have unlabeled multiple target domains
{Dt(1), . . . ,Dt(N)}, where N is the number of target
domains and Dt(j) = {xi

t(j)}
nt
i=1 represents the total

samples of domain j. More specifically, xi
t(j) ∈ Xt(j)

is the ith sample of the target domain j, where Xt(j) is
feature space and nt is the number of unlabeled samples
for the corresponding target domain.

• The feature space of the single source and multiple target
domains is same, i.e., Xs = Xt(1) = Xt(2) = ... = Xt(N),
where N is the number of target domains.

• The marginal distribution between the source domain and
target domains is different due to variation on multiple
target domains (e.g. with different working conditions),
i.e., Ps(x) 6= Pt(j)(x) (j = 1, 2, ..., N ). In addition,
marginal distributions among different target domains are
also different, i.e., Pt(j)(x) 6= Pt(k)(x), where j 6= k.

• Label space of the single source domain and multiple
target domains is the same, i.e. Ys = Yt(1) = Yt(2) =
... = Yt(N)

B. Supervised Learning with Labelled Source Domain Data

Our first step employs the labelled source domain data
Ds = {xi

s, y
i
s}

ns
i=1 , where yis ∈ {1, ..., k} and k is the

number of classes, to learn a feature extractor Es and classifier
C in supervised learning manner by minimizing the cross
entropy loss between the predicted labels and ground-truth
labels which is shown in the following equation.
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Fig. 3. Adversarial single source multiple target domain adaptation (AMDA) model for fault diagnosis with three main architectures: feature extractors (e.g.,
Es for source domain and Et for target domains), classifier C, and discriminator D.

Lce = −
1

ns

ns∑
i=1

1{yis = j} logC(Es(x
i
s)) (1)

Where Lce is the cross entropy loss, yi ∈ Ys, and 1 is an
indicator function that return 1 when argument is true.

The parameters of feature extractor will be used in the next
step for two purposes: 1) initialize the target domain feature
extractors Et(N) to be inherently class discriminative, and
2) be used as a reference model during adversarial training.
Algorithm 1 provides the pseudo code, including the details of
training source feature extractor Es under the supervision of
source domain labels, by employing Ds to learn the parameters
of Es that can minimize the classification loss in Eq. 1.

Algorithm 1: Supervised Learning Using Labelled
Data from Source Domain

Input: Single source domain: Ds = {xi
s, y

i
s}ns

i=1, and batch
size is m

Output: Trained source feature extractor Es and classifier C
Es ← Convolutional neural network
C ← Fully connected neural network
for number of samples do

1. Xs ← {x1
s, . . . ,x

m
s }, mini-batch of source samples

2. Ys ← {y1
s , . . . , y

m
s }, mini-batch of source labels

3. Preds← C(Es(Xs))
4. Train Es and C using Eq. 1
5. Update the weights using Adam optimizer

end

C. Adversarial Training of Multiple Target Feature Extractors

The key idea of adversarial training is based on min-max
game between the target feature extractor and the domain
discriminator. More specifically, the discriminator network is

trained to distinguish between the source and target features,
while the target feature extractor is trained to maximize the
discriminator loss by producing target features that is invariant
from the source domain features [24]. Hence, the classifier
trained on the source domain features can generalize well
on the target domain features. Nevertheless, this approach
can generalize well to only single domain at a time and
for any change in the target or in the source domain you
need to train new model independently. As such, to handle
k working conditions you need to train k different models
which is not a viable solution. In our work, we propose a
scalable model that can handle multiple working conditions
concurrently. We find a new shared feature representation
among the multiple target domains that can be invariant from
the source domain features in one training phase. Thus, the
trained source classifier can generalize to the domain invariant
features of the target domains. To do so, we tie the weights
of all the target feature extractors during training phase. As
a result, we can use the common weights of target feature
extractors to map any of target domains to be invariant from
the source domain features. In this section, we provide the
detailed training process of our proposed approach

Our key idea is to provide an efficient framework to
handle N target domains in one training phase, by training
a discriminator against N target feature extractors simultane-
ously. Particularly, we pass {Xt(1), . . . ,Xt(N)} to N feature
extractors with tied weights to produce {ht(1), . . . ,ht(N)}.
Then the discriminator network D will perform domain classi-
fication between the source domain features hs and the target
domain features. However, initially, the target domains features
(e.g., {ht(1), . . . ,ht(N)}) are very distinguishable from source
domain features (e.g., hs). Thus the discriminator loss can
vanish and limit the domain alignment process. To prevent
the resulted gradient vanishing, the discriminator is trained
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every N iterations of training target feature extractors. Hence,
the discriminator can push the N target feature extractors
to map all the target domains to shared latent space, where
the discrepancy between the source domain and these N
target domains is minimized. The discriminator and multiple
target feature extractors are trained with generative adversarial
networks (GAN) loss [24]. In particular, the discriminator is
trained using logistic function by assigning 1 to the source
domain data, and 0 to the data in N target domains. The
discriminator classifies each input sample and decide whether
it belongs to the source domain or the target domains, under
standard supervised learning fashion, where the loss is denoted
as LD.

min
D
LD =− Exs∼Ps

[
logD(Es(xs))

]
−

N∑
j=1

Ext(j)∼Pt(j)

[
log(1−D(Et(j)(xt(j))))

]
.

(2)

Where xs is source domain sample , xt(j) are the target
domains samples with (1 ≤ j ≤ N).

The objective function of the target feature extractors is
defined as follows:

min
Et(1),...Et(N)

LE = −
N∑
j=1

Ext(j)∼Pt(j)

[
logD(Et(j)(xt(j)))

]
.

(3)

where Et(i) is the feature extractor for the ith target domain
(1 ≤ i ≤ N ). By minimizing the loss function LE , the target
feature extractors will map the target domain features to a
shared latent space where the discrepancy between the centroid
of all target distributions and source domain distribution is
minimized.

Detailed steps for fine tuning phase are presented in Algo-
rithm 2, where the parameters of Et(N) are derived such that
the output features are domain invariant and class discrimina-
tive. Adversarial training is employed between N target feature
extractors with tied layers and discriminator D to minimize
LD and LE .

D. Testing on the Target Domain

To justify our contribution by formulating the DA problem
as 1SmT, we test the trained Et to samples from any of N
target domains, and then pass the output features to the pre-
trained classifier C to predict the class of the corresponding
sample. Eq. 4 shows the usage of softmax to compute the
probability of each class given the input instance from any
target domains:

p(yi = k|C) =
exp(Ck(Ft))∑
k′ exp(Ck′(Ft))

(4)

where Ft is latent representation of the corresponding target
domain, Ck′(·) denotes the output of kth class resulted from
softmax.

Algorithm 2: Adversarial Training for Multiple Tar-
gets

Input: Single source domain : Ds = {xi
s, y

i
s}ns

i=1, Multiple
target domains: {Dt(1), . . . ,Dt(N)}, where with
Dt(j) = {xj

t}
nt
i=1, N is number of target domains,

and m is the batch size.
Output: Trained multiple target feature extractors

Et(1), . . . , Et(N)

Es ← Pretrained source feature extractor
Et(N) ← Initialize with source parameters Es

D ← Discriminator network
for number of iterations do

1. Sample mini-batch of m source samples Xs ∼ Ps

2. Sample mini-batch of m from each target domain:
{Xt(1), . . . ,Xt(N)} ∼ {Pt(1), . . . Pt(N)}

3. Extract source domain features: Es(Xs)
4. Extract features from N target domains concurrently:
{Et(1)(Xt(1)), . . . , Et(N)(Xt(N))}

5. Update D by Eq. 2 // Train Discriminator

for M steps do // Train Et M times
6. Extract features from N target domains:
{Et(1)(Xt(1)), . . . , Et(N)(Xt(N))}

7. Update the target feature extractor Et by Eq. 3
end

end

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
AMDA model on fault diagnosis that needs to classify machine
bearing health status into either normal or different classes of
faults.

A. Implementation Details

In our model, we employed a five layer 1D CNN as
a feature extractor and used wide input kernel for longer
dependencies. Fully connected neural network with softmax
layer was used for fault classification, while two layer fully
connected network was used to discriminate between the
source domain and target domain data. Fig. 3 illustrates the
detailed implementation of both feature extractor and classifier.
The learning rate of feature extractor and discriminator is set
to be 1e-4, which is small enough to avoid overshooting valley
or minimum in the error surface, and thus yields the maximum
generalization accuracy.

B. Case 1: Case Western Reserve University Dataset

1) Dataset Description: We have employed Case Western
Reserve University (CWRU) [33] benchmark dataset, which
has been collected from drive end of motor under 12k sampling
rate. The data consists of four different subsets. Particularly,
each subset represents a specific working condition, i.e., a
specific working load from 0 to 3hp. Each subset has 4
different class labels for faults, i.e., normal and three types of
faults, namely inner-race (IF), bearing-race (BF), and outer-
race (OF) at centered position of @6:00 relative to the load
zone. Moreover, each type of fault could have 3 different
fault sizes, i.e., 0.007 inches, 0.014 inches, and 0.021 inches,
which leads to 10 different classes (1 normal class, and 9
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fault classes), as shown in Table I. In addition, we used
sliding windows with overlaps on time series data for data
augmentation to increase the number of samples [34]. The
corresponding window width and shifting step is 4096 and
295 respectively. Eventually, each working condition has 4000
samples and each sample is represented as a 4096 dimensional
vector.

TABLE I
CWRU BEARING DATASET DESCRIPTION [35]

Working Condition Loading Torque Fault Type Fault Size (inches)

A 0 hp Normal, IF, OF, BF 0, 007,0.014, 0.021

B 1 hp Normal, IF, OF, BF 0, 007,0.014, 0.021

C 2 hp Normal, IF, OF, BF 0, 007,0.014, 0.021

D 3 hp Normal, IF, OF, BF 0, 007,0.014, 0.021

2) Experimental Results: We denote four working condi-
tions as A, B, C and D, which correspond to load 0, 1, 2, and 3
respectively. To comprehensively evaluate the performance of
our proposed AMDA model, we conducted 12 cross-domain
experiments as shown in Fig. 4. For the first 3 experiments
(A→B, A→C, A→D), we used working condition A as source
domain, and B, C and D as multiple target domains to learn
the feature extractors, classifier and discriminator. Then, we
tested the learned feature extractor on each individual target
domain B, C and D to generate the results for A→B, A→C
and A→D, respectively. Similarly, we also used B, C, and D
as our source domains for cross-domain experiments.

Fig. 4 shows the performance of our proposed AMDA
model over 12 cross-domain experiments. Note that without
DA in Fig. 4 refers to our AMDA model without the discrim-
inator, i.e., directly using the source feature extractor for the
target domain. Overall, our AMDA achieves an average accu-
racy of 99.13% over 12 experiments, which is 6.04% higher
than without DA. These results demonstrate the effectiveness
of domain adaptation in our model for cross-domain fault
diagnosis. Note that, we use a 1-layer classifier C (see Fig.
3) in this work. Our empirical test demonstrates that if we
use more layers for the classifier C, the AMDA without DA
will perform even worse (i.e., the gap between AMDA with
and without DA becomes larger) due to the general issue of
overfitting.

In addition, there are some easy transfer cases, such as
A→B and B→A scenarios, for which without DA can achieve
an accuracy of 96.02% and 97.18% as shown in Fig. 4.
Meanwhile, D→A and D→B scenarios are hard transfer cases,
with performance of 89.97% and 86.24% respectively. With
our proposed AMDA model, we can achieve improvement
for both easy and hard transfer cases, e.g., 3.33% for A→B
and 11.34% for D→B. Hence, AMDA can play a more
important role and achieve better performance when domain
discrepancies become larger and harder to transfer.

3) Comparison to Domain adaptation baselines: To
demonstrate the superiority of the proposed AMDA, we imple-
mented four domain adaptation baselines: Transfer Component
Analysis (TCA) [36], Joint Distribution Adaptation (JDA)
[37], Correlation Alignment (CORAL) [38], Deep Domain
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Fig. 4. Evaluation of AMDA with and without domain adaptation on CWRU
dataset using 12 cross-domain scenarios

Confusion (DDC) [39], Deep Maximum Mean Discrepancy
(MMD) [40], and Deep CORAL [41].

Table II shows the results of different domain adaptation
techniques using CWRU dataset. It can be found that the DDC
achieves the best performance among baselines with an overall
accuracy of 96.25%. The proposed AMDA outperforms all the
baseline techniques on 12 domain adaptation scenarioes with
an overall accuracy of 99.13%, which indicates the effective-
ness of the proposed AMDA for this domain adaptation task.

4) Comparison to State-of-the-arts: To better evaluate the
performance of our proposed AMDA model, we have also
conducted experiments to compare it with 3 different state-of-
the-art baselines, which are summarized as follows.

• The first approach is fault diagnosis using deep neural
network (DNN) [42], which consists of pre-training the
stacked-autoencoder in unsupervised manner and fine-
tuning the network under the supervision of source labels.

• The second approach is a 5-layer CNN with wide input
kernel which was demonstrated to achieve high accuracy
(WDCNN) [34].

• The last method is transfer inference with convolutional
neural network (TICNN) with a 6-layer CNN and in-
troduces dropout in the first input layer. Additionally
ensemble learning has been employed to stabilize the
performance of their model [43].

Table III shows the performance comparison between the
proposed AMDA model with three state-of-the-art methods.
For these three competing methods, they only reported their
results on 6 cross-domain experiments. Therefore, we also
conducted the same cross-domain experiments for fair eval-
uation.

We observe that our proposed AMDA method achieves
better results than three existing methods consistently. Note
that almost all the methods have achieved good results for
easy transfer cases (e.g., A→B), however, they fail to achieve
good results in more challenging tasks with high domain
discrepancies (e.g., C→A). Nevertheless, with well-designed
adversarial domain adaptation, our AMDA model is able to
achieve significant improvements over all the state-of-the-art
methods. Furthermore, this excellent performance is achieved
under the challenging settings of 1SmT by adapting multiple
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TABLE II
EVALUATION OF AMDA ON CWRU DATASET AGAINST DOMAIN ADAPTATION BASELINES USING 12 CROSS-DOMAIN SCENARIOS

Method A→B A→C A→D B→A B→C B→D C→A C→B C→D D→A D→B D→C AVG

Shallow
CORAL 53.73 49.29 49.21 79.74 74.72 78.76 71.41 62.55 62.19 75.48 73.17 68.25 66.55

TCA 64.06 64.4 76.94 66.94 75.92 82.96 56.06 67.34 30.4 74.86 44.79 70.05 64.56

JDA 71.35 66.25 82.23 67.69 73.68 83.76 54.49 66.10 60.32 75.86 80.25 70.61 71.05

Deep

DDC 95.62 98.42 95.04 95.56 98.33 99.06 95.83 97.17 97.29 86.42 96.62 99.62 96.25

Deep MMD 97.27 90.60 94.69 96.23 98.88 97.90 94.60 96.63 93.6 95.25 95.50 99.06 95.85

Deep CORAL 88.73 87.13 97.52 97.58 98.75 98.38 94.54 96.04 97.21 96.10 96.52 98.19 95.56

AMDA 99.35 99.70 99.52 98.56 99.95 99.31 99.10 98.62 99.65 98.27 97.58 99.97 99.13

TABLE III
COMPARISON WITH RELATED WORKS ON 6 TRANSFER SCENARIOS

Method A→B A→C B→A B→C C→A C→B AVG

DNN 82.2 92.6 72.3 77.0 76.9 77.0 79.60

WDCNN 99.2 91.0 95.1 91.5 78.1 85.1 90.00

TICNN 99.1 90.7 97.4 98.8 89.2 97.6 95.47

AMDA 99.4 99.7 98.6 99.9 99.1 98.6 99.21

targets simultaneously in one training phase, in comparison
with only one single target at a time for all the competing
methods.

C. Case 2: KAt Bearing Dataset

1) Dataset Description: KAt bearing dataset was collected
using the modular rig tester as shown in Fig. 5 [44]. The tester
consists of several components: (1) electric motor, (2) torque-
measurement shaft, (3) a rolling bearing test module, (4) fly
wheel and (5) load motor. More details about the modular
tester for data collection can be found in [44]. In this dataset,
32 experiments for rolling bearing elements were conducted
to collect 3 types of data, namely, undamaged bearing data,
artificially damaged bearing data and real damaged bearing
data. In particular, the bearing data in each experiment has 20
files and each file was collected for 4 seconds with a sampling
rate of 64 KHz.

Fig. 5. Modular test rig for collecting the KAt dataset [44]

To generate the data samples, we also used overlapping
sliding windows to segment the time series data, where we
set the window size as 5120, as in [45]. As mentioned above,
KAt dataset has 3 classes - 1 normal class (undamaged) and 2
faulty classes including inner faults and outer faults, which can

be caused by either artificial or real damages. In this paper,
we focused on the faults from real damages and generated
4900, 6200 and 6200 samples for normal class, inner faults
and outer faults, respectively.

In addition, KAt bearing data was collected under 4 different
working conditions, denoted as E, F, G and H. Table IV shows
the parameter settings (i.e., rotational speed, load torque and
radial force) for each working condition.

TABLE IV
DIFFERENT WORKING CONDITIONS

Working
Condition

Rotational
Speed [rpm]

Load Torque
[Nm]

Radial
Force [N]

E 900 0.7 1000

F 1500 0.1 1000

G 1500 0.7 400

H 1500 0.7 1000
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Fig. 6. Evaluation of AMDA with and without domain adaptation on KAt
dataset using 12 cross-domain scenarios

2) Experimental Results: We also conducted 12 cross-
domain experiments on KAt dataset to validate the perfor-
mance of our proposed AMDA model. For example, we
employed the working condition E as source domain and F, G
and H as multiple target domains to generate the results for
cross-domain tasks E→F, E→G and E→H.

Fig. 6 shows the evaluation results of our AMDA model
with and without domain adaptation (without DA). Over 12
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TABLE V
EVALUATION OF AMDA ON KAT DATASET AGAINST DOMAIN ADAPTATION BASELINES USING 12 CROSS-DOMAIN SCENARIOS

Method E→F E→G E→H F→E F→G F→H G→E G→F G→H H→E H→F H→G AVG

Shallow
CORAL 55.77 66.24 56.25 43.42 79.81 87.26 50.51 88.91 87.46 34.81 94.11 77.68 68.52

TCA 42.06 68.47 45.36 53.00 80.56 93.42 63.36 92.26 90.62 51.59 96.96 84.45 71.84

JDA 65.21 70.60 64.90 80.07 74.05 82.03 85.26 87.10 82.50 74.89 91.14 74.88 77.72

Deep

DDC 49.77 60.33 59.31 59.14 97.84 99.80 89.14 94.94 99.69 86.07 99.87 97.62 82.79

Deep MMD 81.39 84.16 91.04 81.18 97.83 99.98 81.63 99.67 99.97 89.14 99.66 97.72 91.95

Deep CORAL 84.06 87.03 88.80 80.65 90.17 99.99 83.22 99.98 99.99 80.44 100.00 98.50 91.07

AMDA 99.37 97.15 99.83 78.98 97.61 100.00 88.67 100.00 100.00 78.89 100.00 97.52 94.83

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS

Method F→G F→H G→F G→H H→F H→G AVG

ACDIN 79.43 78.73 85.07 90.53 79.53 75.60 81.48

WDCNN 72.33 94.70 69.33 69.77 93.67 70.27 78.35

Alexnet 78.87 98.47 65.93 66.20 96.03 74.07 79.93

Resnet 71.33 96.67 64.53 67.23 92.73 72.60 77.52

ICN 80.67 96.97 70.23 70.67 94.27 79.50 82.05

AMDA 97.61 100.00 100.00 100.00 100.00 97.52 99.19

cross-domain tasks, AMDA achieves an average accuracy of
94.83%, which is 7.73% higher than without DA. Once again,
it demonstrates that the designed domain adaptation technique
in AMDA model is effective for cross-domain fault diagnosis.

As shown in Fig. 6, without DA achieves relatively low
performance for the 6 tasks involving the working condition
E (i.e., E→F, E→G, E→H, F→E, G→E and H→E) with
an average accuracy of 76.71%. This indicates that changing
the rotational speed would cause more significant domain
shift than changing load torque or radial force, leading to a
large domain discrepancy between E and other 3 domains F,
G and H. However, our AMDA can perform very well for
these 6 hard transfer tasks - it achieves an average accuracy
of 90.48%, with a significant improvement of 13.77% over
without DA.

3) Comparison with Domain Adaptation Baselines: Here,
we compare the proposed AMDA method with the same
domain adaptation baselines, i.e., TCA, JDA, CORAL, DDC,
Deep MMD, and Deep CORAL. Table V presents the com-
prehensive evaluation of various methods across 12 different
transfer tasks. Over 8 out of 12 cross-domain tasks, our AMDA
method performs better than the implemented baselines. Over-
all, AMDA achieves the highest average accuracy of 94.83%
as shown in Table V, which is 3.76% higher than the second
best method, i.e., Deep CORAL.

4) Comparison with the state-of-the-arts: The authors in
[45] reported the performance of 5 deep learning based meth-
ods on Kat dataset using 6 cross-domain scenarios. These
5 state-of-the-art methods include ACDIN [46], WDCNN
[34], AlexNet [47], ResNet [48] and ICN [45]. In partic-
ular, AlexNet and ResNet, which are famous convolutional
architectures for image classification, were applied for fault

diagnosis in [45]. Meanwhile, the other three methods are
recently proposed for fault diagnosis. For example, ACDIN
[46] refers to deep inception network with atrous convolution.
The inception part in ACDIN concatenates multiple filters with
different size to support different resolutions, while atrous
convolution is a dilated filter to support wider input field.
WDCNN [34] implements five 1-dimensional convolutional
layers with wide input kernel. ICN [45] is an inception based
capsule network for fault diagnosis, where the capsule network
[49] is employed to capture correlation between different
features and inception is used to extract features on different
resolutions.

For fair comparison, we selected the same cross-domain
scenarios for AMDA and the 5 state-of-the-arts above. Ta-
ble VI shows the performance of various methods over 6
transfer tasks on KAt dataset. Overall, our AMDA significantly
surpass the 5 competing approaches with an average accuracy
of 97.52%, which is 15.47% higher than ICN (the second-best
method).

D. Case 3: Self-collected Dataset

1) Dataset Description: We collected an additional dataset
based on drivetrain dynamic simulator (DDS) platform [50] for
further verification. The sampling rate of the vibration signal
is 5120Hz. For this dataset, it consists of one normal class
and three types of faults, i.e., inner-race (IR), outer-race (OR)
and ball-crack (BC), under three different working conditions
as shown in Table VII. We also use sliding windows with
overlaps to segment the data, while the window size and the
step size are the same as the CWRU dataset.

TABLE VII
DIFFERENT WORKING CONDITIONS FOR THE SELF-COLLECTED DATASET

Working Condition Loading Torque Fault Type

I 0 Nm Normal, IR, OR, BC

J 7.2 Nm Normal, IR, OR, BC

K 14.4 Nm Normal, IR, OR, BC

2) Experimental Results: We denote three working con-
ditions as I, J and K, which correspond to load 0 Nm,
7.2 Nm and 14.4 Nm respectively. Thus, six cross-domain
experiments for our proposed method with and without DA
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TABLE VIII
COMPARISON AGAINST DOMAIN ADAPTATION BASELINES

Method I→J I→K J→I J→K K→I K→J AVG

Shallow
CORAL 44.95 60.37 50.48 49.95 59.42 42.13 51.22

TCA 74.30 49.61 87.52 50.19 56.37 58.67 62.78

JDA 71.96 48.19 75.03 56.79 50.22 57.06 59.875

Deep

DDC 83.81 72.41 90.25 57.45 69.28 77.56 75.13

Deep MMD 87.4 68.34 80.97 55.13 59.16 66.96 69.66

Deep CORAL 89.45 68.01 87.49 61.91 65.20 68.84 73.48

AMDA 92.42 73.04 93.15 74.6 94.17 93.44 86.80

have been performed as shown in Fig. 7. It is consistent with
our previous evaluation that the DA can significantly improve
the performance of fault diagnosis. Specifically, the proposed
AMDA achieves an average accuracy of 86.80%, which is
11.50% higher than that without DA. This further indicates the
effectiveness of the proposed method for cross-domain fault
diagnosis.
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Fig. 7. Evaluation of AMDA with and without domain adaptation on self-
collected dataset.

3) Comparison with Domain Adaptation Baselines: Similar
to the previous evaluation, we compare with some advanced
benchmark approaches for DA, including conventional DA
methods (i.e., TCA, JDA and CORAL) and deep DA methods
(i.e., DDC, Deep MMD and Deep CORAL). The results for
the six cross-domain experiments are demonstrated in Table
VIII. Due to the relatively large gap (load variation) between
domains, the performances of all the approaches degrade to
some extent. Consistently, our AMDA method outperforms the
benchmark approaches in all the six cross-domain scenarios.

E. Evaluation of Proposed 1SmT Setting

In this section, we compare the 1SmT setting and 1S1T
setting on KAt dataset in terms of generalization and time
efficiency. For 1S1T, we selected the DDC method as it is the
best baseline as shown in both Tables II and V. In addition
to 1SmT and 1S1T settings, we further constructed 1SmxT
setting by mixing N target domains as a single target domain.
We also ran DDC and our AMDA under 1SmxT setting and
included their results for comparison.

Table IX illustrates the accuracy of AMDA and DDC
under different settings. The column E source in Table IX
means that E is used as source domain and F, G, and H are
target domains (similarly for columns F source, G source and
H source). Clearly, our AMDA (1SmT) outperforms AMDA
(1SmxT) by 3.38% and also significantly outperforms DDC
under both 1S1T and 1SmxT settings. For DDC itself, mixing
the target domains, i.e., DDC (1SmxT), leads to a performance
deterioration of 6.84% compared to DDC (1S1T).

TABLE IX
ACCURACY (%) OF AMDA AND DDC UNDER DIFFERENT SETTINGS

E source F source G source H source AVG

AMDA (1SmT) 98.78 92.20 96.22 92.14 94.83

AMDA (1S1T) 97.94 95.35 96.33 98.81 97.11

AMDA (1SmxT) 93.66 92.13 92.96 87.05 91.45

DDC (1SmxT) 45.78 80.94 92.70 84.37 75.95

DDC (1S1T) 56.47 85.59 94.59 94.52 82.79

TABLE X
TRAINING TIME (SEC) OF AMDA UNDER 1SMT AND 1S1T SETTINGS

Model Total Time

AMDA (1SmT) 712.07

AMDA (1S1T) 1781.12

In addition, we can observe that AMDA (1S1T)–which
is also our implementation–achieves higher accuracy than
AMDA (1SmT). However, AMDA (1SmT) has higher scala-
bility than AMDA (1S1T) and can generalize well to multiple
target domains. In particular, AMDA (1SmT) can significantly
reduce the model training compared with AMDA (1S1T), as
shown in Table X. Therefore, our proposed AMDA (1SmT) is
more suitable than AMDA (1S1T) for practical scenarios.

V. CONCLUSION

In this paper, we have introduced a novel domain adaptation
scenario, i.e., single source multiple target (1SmT) setting,
for fault diagnosis applications. It is more realistic than the
existing single source single target (1S1T) setting, as working
conditions may change in practice for manufacturing envi-
ronments. We have proposed a novel adversarial multiple-
target domain adaptation (AMDA) framework, which has a
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deep learning architecture for adversarial unsupervised domain
adaptation. Extensive experiments have been conducted to
evaluate our proposed AMDA model on two public datasets
and one self-collected dataset. Experimental results demon-
strate that the proposed AMDA method significantly out-
performs the benchmarking methods for cross-domain fault
diagnosis. In our future works, we aim to extend domain adap-
tion to include more physical variations. Moreover, the more
challenging and practical domain adaption scenarios, such as
cross environments or machines, will also be considered.
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